The Stochastic Discount Factor: Extending the Volatility Bound and a New Approach to Portfolio Selection with Higher-Order Moments

نویسندگان

  • Fousseni Chabi-Yo
  • René Garcia
  • Eric Renault
چکیده

The authors extend the well-known Hansen and Jagannathan (HJ) volatility bound. HJ characterize the lower bound on the volatility of any admissible stochastic discount factor (SDF) that prices correctly a set of primitive asset returns. The authors characterize this lower bound for any admissible SDF that prices correctly both primitive asset returns and quadratic payoffs of the same primitive assets. In particular, they aim at pricing derivatives whose payoffs are defined as non-linear functions of the underlying asset payoffs. The authors construct a new volatility surface frontier in a three-dimensional space by considering not only the expected asset payoffs and variances, but also asset skewness. The intuition behind the authors’ portfolio selection is motivated by the duality between the HJ mean-variance frontier and the Markowitz meanvariance portfolio frontier. The authors’ approach consists of minimizing the portfolio risk subject not only to portfolio cost and expected return, as usual, but also subject to an additional constraint that depends on the portfolio skewness. In this sense, the authors shed light on portfolio selection when asset returns exhibit skewness. JEL classification: G11, G12, C61 Bank classification: Financial markets; Market structure and pricing Résumé L’objet de l’étude est l’extension du concept bien connu de borne de variance proposé par Hansen et Jagannathan. Alors que ces derniers caractérisent la variance minimale que doit avoir un facteur d’actualisation stochastique admissible pour que soit évalué correctement un ensemble d’actifs primitifs, Chabi-Yo, Garcia et Renault considèrent l’effet qu’a sur cette borne de variance l’ajout de contraintes imposées par l’évaluation correcte des fonctions quadratiques des gains de ces actifs primitifs. Ils abordent ainsi le problème de l’évaluation d’actifs dérivés dont les gains sont par définition des fonctions non linéaires des gains des actifs sous-jacents. Ils trouvent utile de décrire la frontière de variance ainsi obtenue dans un espace à trois dimensions mettant en jeu non seulement les rendements espérés et leur variance, mais aussi leur coefficient d’asymétrie. De même que la frontière de variance de Hansen et Jagannathan présente une relation de dualité avec la frontière efficiente moyenne-variance du choix optimal de portefeuille au sens de Markowitz, la frontière que proposent Chabi-Yo, Garcia et Renault peut être interprétée en termes du choix d’un portefeuille dont le risque est minimisé étant donnés le coût, le rendement espéré et (ce qui est nouveau) le coefficient d’asymétrie du portefeuille. En ce sens, les auteurs donnent un nouvel éclairage au problème de choix de portefeuille en présence de rendements asymétriques. Classification JEL : G11, G12, C61 Classification de la Banque : Marchés financiers; Structure de marché et fixation des prix

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Empirical Likelihood Estimators for Stochastic Discount Factors

Hansen and Jagannathan (HJ, 1991) provided bounds on the volatility of Stochastic Discount Factors (SDF) that proved extremely useful to diagnose and test asset pricing models. This nonparametric bound reflects a duality between the meanstandard deviation frontier for SDFs and the mean-variance frontier for portfolios of asset returns. We extend this fundamental contribution by proposing inform...

متن کامل

Aggregation of preferences for skewed asset returns

This paper characterizes the equilibrium demand and risk premiums in the presence of skewness risk. In a model with a single time period, we extend the classical mean-variance two-fund separation theorem to a three-fund separation theorem. The additional fund is the skewness portfolio, i.e. a portfolio that gives the optimal hedge of the squared market return; it contributes to the skewness ris...

متن کامل

Outperformance Testing of a Dynamic Assets Portfolio Selection Supplemented with a Continuous Paths Levy Process

This study aims at getting a better performance for optimal stock portfolios by modeling stocks prices dynamics through a continuous paths Levy process. To this end, the share prices are simulated using a multi-dimensional geometric Brownian motion model. Then, we use the results to form the optimal portfolio by maximizing the Sharpe ratio and comparing the findings with the outputs of the conv...

متن کامل

Bayesian Dynamic Factor Models and Portfolio Allocation

We discuss the development of dynamic factor models for multivariate financial time series, and the incorporation of stochastic volatility components for latent factor processes. Bayesian inference and computation is developed and explored in a study of the dynamic factor structure of daily spot exchange rates for a selection of international currencies. The models are direct generalizations of...

متن کامل

CVaR Reduced Fuzzy Variables and Their Second Order Moments

Based on credibilistic value-at-risk (CVaR) of regularfuzzy variable, we introduce a new CVaR reduction method fortype-2 fuzzy variables. The reduced fuzzy variables arecharacterized by parametric possibility distributions. We establishsome useful analytical expressions for mean values and secondorder moments of common reduced fuzzy variables. The convex properties of second order moments with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000